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Water usually contains dissolved gases, and because freezing is a purifying process these gases
must be expelled for ice to form. Bubbles appear at the freezing front and are then trapped in ice,
making pores. These pores come in a range of sizes from microns to millimeters and their shapes
are peculiar; never spherical but elongated, and usually fore-aft asymmetric. We show that these
remarkable shapes result of a delicate balance between freezing, capillarity, and mass diffusion. A
non-linear ordinary differential equation suffices to describe the bubbles, which features two non-
dimensional numbers representing the supersaturation and the freezing rate, and two additional
parameters representing simultaneous freezing and nucleation treated as the initial condition. Our
experiments provide us with a large variety of pictures of bubble shapes. We show that all of these
bubbles have their rounded tip well described by an asymptotic regime of the differential equation,
and that most bubbles can have their full shape quantitatively matched by a full solution. This
method enables the measurement of the freezing conditions of ice samples, and the design of freeze-
cast porous materials. Furthermore, the equation exhibits a bifurcation that explains why some
bubbles grow indefinitely and make long cylindrical ”ice worms”, well known to glaciologists.

Ice frozen from water containing dissolved air is usu-
ally not clear but opaque, because it includes many bub-
bles [1]. This is commonly observable in ice cubes from a
freezer. These bubbles have peculiar shapes, never spher-
ical but elongated (Fig. 1). Some even reach lengths of
several centimeters [2] – they are named ”ice worms” [3]
or ”worm bubbles” [4]. Gases are soluble in liquid water
but not in ice, so that when water freezes the dissolved
gases are expelled and concentrate in the liquid [5]. Bub-
bles eventually nucleate near the freezing front and are
captured by ice, while at the same time they keep grow-
ing by diffusion of the gas. Ice thus formed is porous.
Usually, one speaks of bubbles in water and pores in ice.

In the natural environment, porous ice is the rule
rather than the exception. Hailstones [6] and lake
ice [4, 7] contain pores made out of the dissolved gas.
Glacier ice is also porous but is made out of compacted
snow and not frozen gas-laden water [8]. In winter, sap
freezes inside plants and bubbles form; after the thaw
these bubbles may prevent the flow of sap (winter em-
bolism) [9]. Generally, freeze-thaw cycles can dramati-
cally affect the stability of complex media, like food [10],
and the survival of living organism [11, 12].

In addition to water, gases are soluble in a large vari-
ety of liquids, including metals [13], silica [14] and sap-
phire [15, 16]; freezing such gas solutions yields porous
materials. Porosity is usually a defect of which to get
rid [17, 18]. However, for certain applications porosity is
desired and therefore the size and shape of the pores must
be controlled [19]. More generally, the freezing of solu-
tions of gases or other solutes makes various freeze-cast

materials [20–22], some of which are biocompatible [23].
During the freezing of a suspension or of an emulsion,
the dispersed particles may or may not be engulfed in
ice, depending on the freezing rate [24]. Their engulf-
ment deforms the freezing front [25], according to their
thermal properties [26]. The particles themselves may
deform when they are captured; for example, oil droplets
in an emulsion make pointy oil drops in ice [27, 28].

Several attempts at describing the growth and entrap-
ment of gas bubbles have been made, either using scaling
laws [29], or taking into account the numerous mech-
anisms at play (heat transfer, phase change, capillarity,
mass diffusion, nucleation) [5, 30, 31]. Freezing and cap-
illarity make a challenging combination. For example,
a sessile drop freezing will grow a tip [32–35]. Also, ice
is actually not perfectly hydrophilic, so that water may
retract on ice instead of spreading [36–38].

In this paper, we investigate the shape of the pores
formed during the freezing of ice, and how it is set by
the growth history of bubbles. We show that under cer-
tain assumptions, this problem reduces to a single non-
linear ordinary differential equation, which we study an-
alytically. Two asymptotic regimes are found, one cor-
responding to fast freezing and the other to the closing
of the bubble. Under a certain freezing velocity the sys-
tem undergoes a bifurcation, after which bubbles do not
close any more, thus explaining how worm bubbles ap-
pear and what their equilibrium radius is. Our equation
can also be solved numerically, and its solutions matched
to the shapes of pores obtained experimentally by freez-
ing deionized water at various freezing rates. In most
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cases a quantitative agreement is found between the so-
lution and the experiments.

EXPERIMENTS

Much work having already been dedicated to describ-
ing the pores in ice [2, 5, 6, 29–31, 39], the main purpose
of our experiments is to provide a basis of comparison
with our model, as well as a qualitative description for
the reader to better understand the problem and the as-
sumptions of the model.

We study the freezing of water, in which gases are nat-
urally dissolved, in a Hele-Shaw cell for freezing rates
varying between 12 µm/s and 263 µm/s (Fig. 1a, and
Materials and Methods). Figure 1(b) reports the forma-
tion of a pore at a freezing rate of 54 µm/s. First, a
bubble nucleates at the freezing front. Then, this bub-
ble grows by diffusion of dissolved gas, while the freezing
front keeps advancing. The bubble expands radially up to
a maximum after which it shrinks. Eventually, the freez-
ing front passes by and the pore closes; its final shape is
set. For the case shown in Figure 1(b), the whole process
takes about 2 s, and the final bubble is 154 µm-long and
64 µm-wide.

The pores in ice are never spherical, but elongated
in the direction of freezing. Their number also varies
with the freezing rate. At a high freezing rate (Fig. 1c,
133 µm/s on average), many small pores, slightly elon-
gated, are formed. Conversely, at a slower freezing rate
(Fig. 1d, 46 µm/s), fewer pores are formed, and they are
bigger and longer.

The place of nucleation of the bubble and the time
elapsed before it is trapped may also influence greatly
its final shape. For fast freezing (about 90 µm/s) the
bubble may (Fig. 1e) or may not (Fig. 1f) show a ”tail”.
This likely corresponds to whether or not the bubble was
trapped by a single ice crystal or at the junction of two
crystals, i.e. at a grain boundary. In the latter case, the
initial growth of the bubble is restrained between two
crystals, and this gives it the tail.

Although nucleation usually occurs at the freezing
front, we observe some cases in which the bubble nucle-
ates ahead of the front, probably on some tiny impurity
(see Fig. 1g-h and the corresponding videos) [40]. For
slow freezing, the distance between the nucleation point
and the freezing front matters greatly because it sets the
time span during which the bubble may grow before be-
ing trapped. For instance, the pores shown in Figs. 1(g)
and (h) grew and froze under the same freezing rate of
20 µm/s, however their shapes are different. The former
is 53 µm-long and 36 µm-wide, whereas the latter is 200
µm-long and 96 µm-wide; its aspect ratio is larger. The
difference is that the corresponding bubbles nucleated 35
µm away from the freezing front (Fig. 1g), and 100 µm
away from it (Fig. 1h). The latter had about 3 s more

to grow freely, eventually yielding a different shape, not
only a different size. This observation reveals the strong
dependence of the bubble shape on the initial bubble size.

The nucleation of gas bubbles in water is quite complex
because of the chemistry it involves [41]. In the following,
we shall focus on the growth of the bubble at the freezing
front, after the nucleation and the trapping. As we shall
show, the growth can be well described by a single or-
dinary differential equation. Nucleation and entrapment
will appear as initial conditions.

Our first experimental setup, from which the pictures
of Figures 1(a-i) and most of our experimental data were
obtained, could not maintain freezing rates slower than
12 µm/s with sufficient stability. The fluctuations of the
freezing rate in this system are indeed of the order of
a few µm/s. We studied worm bubbles using another
experimental setup, described in Material and Methods.
This second system enabled us to vary the freezing rates
between 4 µm/s and 17 µm/s with a stability of the order
of a few tenths of µm/s. We used this setup to generate
worm bubbles (Fig. 1j and the later Fig. 6).

THE FROZEN BUBBLE EQUATION

Our model is based on the conservation of the mass of
gas. For simplicity, we treat air as a simple gas and aver-
age its properties over that of nitrogen and oxygen (see
Material and Methods). During its growth, the bubble
can be separated into two parts: a lower part, the pore,
that is trapped in the ice, and an upper part, the bub-
ble per se, that is in contact with the liquid water (see
Fig. 2). As water freezes, gas is virtually transferred from
the bubble to the pore. In the meantime, gas may be ex-
changed between the bubble and the surrounding water.
The direction and magnitude of this mass transfer de-
pends on the Laplace pressure, hence on the curvature of
the bubble.

The shape of the ice-water interface results of the bal-
ance between latent heat and the heat fluxes on either
side. Since the heat conductivity of gas is negligible
compared to that of water and ice, the heat flux to-
wards the bubble Jg must be negligible as well, hence
the streamlines of the heat flux must be tangent to the
bubble. Being the isotherm corresponding to the freezing
temperature, the freezing front should be orthogonal to
the streamlines and therefore orthogonal to the bubble.
Therefore, we will assume that the contact angle of the
bubble on the ice is close to π/2, as observed for instance
in the freezing of sessile drops [34, 35]. The difference
between the actual contact angle and π/2 (denoted ε in
Fig. 2) will be neglected; this assumption is supported
a posteriori by our measurements. Since the bubble is
much smaller than the capillary length (2.7 mm for wa-
ter), the liquid-gas interface has a uniform curvature; it
is a spherical cap. In summary, heat transfer and cap-
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FIG. 1. (a) Schematic of the experimental setup. (b) Timelapse of the nucleation, entrapment, growth and closure of a gas
bubble at the ice-water interface, for a freezing rate of 54 µm/s. (c) Small pores in ice frozen at 133 µm/s. (d) Long pores
in ice frozen at 46 µm/s. Other pictures describe particular cases: (e) v = 91 µm/s, with nucleation between ice grains; (f)
v = 90 µm/s, with nucleation at the freezing front; (g) v = 21 µm/s, with nucleation 35µm away from the freezing front; (h)
v = 20 µm/s, with nucleation 100µm away from the freezing front; (i) short ice worm for v = 13 µm/s; (j) Worm bubble from
second experimental setup (see Materials and Methods).

illarity impose that the upper part of the bubble be a
hemisphere of radius R. Let R be the radius of that
hemisphere, and also the radius of the contact line be-
tween the bubble and the freezing front. The rest of the
model consists in writing an evolution equation for R(t)
and then in constructing the shape of the pore by trans-
lation of the contact line of radius R(t) at velocity v.

In order to simplify the calculations, we assume that
the gas concentration far away from the bubble, c(r →
∞) = c0, is constant. In practice, gas is released into the
liquid at the freezing front, and that creates a concentra-
tion profile in the z-direction with a strong gradient near
the front. More specifically, c(z)/c0 ∼ exp (−z v/D) [6],
with D the gas diffusivity. Meijer et al. have recently
estimated the gradient on similar experiments [40]; they
find that it is of order 1 (mg/L)/mm. For the gas concen-
trations considered here, it means that the concentration
profile near the front far from the bubble smoothes out
over a length scale D/v, which is of order of 10 µm, about
the size of the bubble. Furthermore, for not too slow v,
gas accumulates at the front during the freezing process,

so that for large pores frozen over a long time the sur-
rounding gas concentration may increase in time. The
physical meaning of c0 is therefore closer to an effective
concentration, which averages out the concentration gra-
dients created by phenomena others than the growth of
the current bubble.

The bubble grows out of the gas-saturated water by
mass transfer. The corresponding mass flux can be ex-
pressed in a closed form by solving the diffusion equa-
tion in the half-space bounded by a plane upon which
sits a hemisphere. Under the hypothesis that the bound-
ary condition on the plane is that of zero normal flux,
the problem reduces to the rotation-invariant problem
of diffusion around sphere. In spherical coordinates this
problem is written

D

r2
∂

∂r

(
r2
∂c

∂r

)
=
∂c

∂t
, (1)

c(t = 0, r) = c0, (2)

c(t, r = R) = cR, (3)

c(t, r →∞) = c0, (4)
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FIG. 2. Schematic of the model. The upper part of the gas is
the bubble, in contact with water; the lower part is the pore,
in contact with ice. On the left thermal effects are shown, on
the right mass diffusion effects.

where c0 and cR denote the boundary conditions at infin-
ity and at the bubble interface, respectively, and where
D = 2 · 10−9m2/s is the diffusion coefficient of air in wa-
ter [42]. This problem was solved by Epstein and Ples-
set [43], and they obtained a closed form for the surface
density of mass flux through the gas-water interface:

j = D(c0 − cR)

(
1

R
+

1√
πDt

)
. (5)

The origin of times in Eq. (5) corresponds to when dif-
fusion starts, that is when the bubble nucleates. The
solution of the Epstein and Plesset equation is applica-
ble for a bubble in an infinite space. In our experiments
bubbles are ”confined” for easier visualization, but the
gap between the glass slides is at least ten times bigger
than the bubbles, so the Epstein and Plesset equation is
still approximately applicable.

Far from the bubble, water is at ambient pressure P0,
and gas is in excess by a quantity ∆c > 0 with respect
to the solubility: c0 = cs(P0) + ∆c. Hydrostatic pressure
is negligible, given the height of the water column (a few
centimeters) above the bubble. The solubility of gases
in water cs depends linearly on pressure through Henry’s
law: cs(P ) = cs(P0) + kH(P − P0). The constant kH for
air is 2.95 × 10−5kg.Pa−1.m−3, as calculated from the
solubility of nitrogen and oxygen [42]. At the gas-water
interface, the Laplace pressure leads to an increase of the
solubility: cR = cs(P0) + 2γkH/R. γ = 75 mN/m is the
surface tension of water at 0◦C. Therefore, the concen-
tration gap between the interface and the surrounding
water is

c0 − cR = ∆c− 2kHγ/R. (6)

We can now write the conservation of the mass of gas
in the upper part of the bubble:

d

dt

(
2π

3
ρR3

)
= 2πR2j − πR2ρv. (7)

ρ = 1.2kg/m3 is the density of air. The density mismatch
between water and ice is accounted for by the freezing
rate v. Substituting the expression of the flux density
j (Eq. 5 and 6) into the mass balance, and introducing
Rc = 2γkH/∆c we obtain

dR

dt
=
D∆c

ρRc

(
1− Rc

R

)(
Rc

R
+

Rc√
πDt

)
− v

2
. (8)

Let us define Z(t) so that

dZ

dt
= v, (9)

then [Z(t), R(t)] is a parametric curve that describes the
shape of the pore.

A direct consequence of Eq. 8 is that the bubble can
only grow if R > Rc. This observation reveals the physi-
cal meaning of Rc: it is the critical radius a bubble must
have to be stable against dissolution under Laplace pres-
sure. Therefore, even if the water around the bubble is
supersaturated with gas, the bubble may still dissolve if
it is too small. The condition R > Rc is nevertheless
not sufficient to maintain stability, because freezing con-
tributes negatively to dR

dt .
In the rest of the paper, we shall restrict ourselves to

the case of constant freezing rate (dv
dt = 0). Not only does

this simplify greatly the analysis, it also corresponds to
our experimental situation. Therefore, Eq. (9) becomes
trivial and its solution Z = vt can be combined with
Eq. (8) to reduce the problem to a single non-linear or-
dinary differential equation. We write this equation in
non-dimensional form by taking Rc as unit length and
R2

c/D as unit time:

dR

dZ
=
δ

ζ

(
1− 1

R

)(
1

R
+

√
ζ

πZ

)
− 1

2
. (10)

We refer to Eq. (10) as the Frozen Bubble Equation. It
has two non-dimensional parameters: δ = ∆c/ρ is the
non-dimensional supersaturation, and ζ = vRc/D is the
ratio of the characteristic times of freezing and mass dif-
fusion. In the following, we denote R′ = dR

dZ .

ANALYSIS

The fast freezing regime (ζ � δ)

Before turning to the general analysis of the Frozen
Bubble Equation, we describe the specific case in which
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FIG. 3. (a) Solutions of Eq. (10) in the limit ζ � δ, for δ = 1
and various values of ζ. The case ζ → ∞ is the analytical
solution. (b) Rescaling of the shape of the pores near the
tip according to Eq. (12). The prefactor β is fitted for each
profile. The dashed line has slope −1.

mass diffusion is negligible compared to freezing. Taking
ζ → ∞, Eq. (10) reduces to R′ = −1/2. The upper
part of the pore then has the shape of a cone of angle
θc = arctan(1/2) ' 26.5◦ (Fig. 3a). For finite ζ � δ, we
solve the Frozen Bubble Equation numerically to check
that the shapes of the pores indeed converge towards a
conical tip.

Taking the limit ζ →∞ amounts to canceling the pos-
sibility of gas transfer between the bubble and the liquid,
meaning the two substances are immiscible. It is interest-
ing to note that in this limit case, the volume of the cone
must be that of a hemisphere of radius R, so the mass of
gas is conserved. Satisfying this condition requires that
the height of the cone be equal to its maximal diameter, a
condition strictly equivalent to θc = arctan(1/2). There-
fore, in the absence of heat and mass transfer between
the bubble and the liquid, the final pore has the shape of
a cone on top of a hemisphere, and its aspect ratio is 3/2.
This shape is quite similar to that of pointy oil drops in
frozen emulsions [27, 28], although in that case there is
no reason to assume a 90◦ contact angle between oil and
the freezing front.

The limit R→ 0 and the tip of the pore

Another interesting regime is the limit R → 0. It cor-
responds to the closing of the pore. Taking R� 1 in the
Frozen Bubble Equation (10), we obtain

dR

dZ
= − δ

ζ

1

R2
, (11)

which is readily integrated near the closing point of the
bubble R(Zmax) = 0. Near the tip the pore shape should
therefore follow :

R(Z) =

(
3δ

ζ
(Zmax − Z)

)1/3

. (12)

This asymptotic regime is indeed observed in all our
experiments, without exceptions. Figure 3(b) shows a se-
lection of pore profiles extracted from experiments, rep-
resentative of the whole range of freezing rates, rescaled
according to Eq. (12). For all pores we obtain a good
agreement with Eq. (12), which in dimensional form is

written R = [β (Zmax − Z)]
1/3

with β = 3δR2
c/ζ. It is

notable that β does not depend on ∆c. The closing of
the pore proceeds regardless of the supersaturation, only
driven by the Laplace pressure. Below (see Shape Match-
ing), we overlay the cubic shape described by Eq. (12)
onto the profiles.

Alternative form of the Frozen Bubble Equation

The set of values for parameters δ and ζ supplemented
with an initial condition R0 = R(Z0) makes a unique so-
lution of Eq. (10). To compare solutions to experimental
pores, it is more practical to introduce the initial slope
R′(Z0) = R′0, and to express the ratio δ/ζ as a function
of the four parameters R0, Z0, R′0 and ζ. Eq. (10) can
thus be recast in an elegantly symmetric form:

R′(Z) + 1
2

R′0 + 1
2

=
1− 1

R

1− 1
R0

×
1
R +

√
ζ
πZ

1
R0

+
√

ζ
πZ0

. (13)

R0, Z0 and R′0 are geometrical quantities that can be
measured experimentally.

The bifurcation at δ = 2ζ and bubbles that never
close

The general analysis of the solutions of the non-linear
Frozen Bubble Equation can be performed using geo-
metrical techniques. In the (Z,R)-plane, Eq. (10) de-
fines a vector field; at point (Z,R) the vector orienta-
tion is R′(Z) [44]. Starting with the initial condition
R(Z0) = R0, the solution is then the curve that passes
through (Z0, R0) and is everywhere tangent to a vector of
the field. An example is shown in Fig. (4a) for δ = 1 and
ζ = 0.7. The dashed blue curve is the separatrix between
two domains. On the left, R′ > 0 so the bubble grows;
on the right, R′ < 0 so the bubble shrinks. Starting from
different initial conditions, the bubble will grow for some
time before it shrinks, or it will shrink right from the
start without growing.
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FIG. 4. (a) Vector field associated with Eq. (10) for δ = 1 and
ζ = 0.7. It draws a phase space with domains where the bub-
ble grows (R′ > 0, left) and shrinks (R′ < 0, right). The blue
dashed line is the separatrix between the domains. The black
points represent different initial conditions continued to the
right into solutions (solid lines). The dashed curves represent
a spherical shape that matches the initial condition. (b) Evo-
lution of the phase space and the separatrix with decreasing
ζ for constant δ = 1.

Taking R′ = 0 in Eq. (10), we find the equation of the
separatrix:

Z =
ζ

π

 R (R− 1)(
ζ
2δ

)
R2 −R+ 1

2

. (14)

The relevant properties of the phase space associated to
Eq. (10) are the number and the shape of the domains
in which the slope R′ keeps a constant sign. For δ < 2ζ,
the separatrix is bounded on the Z-axis and the domain
to its right corresponds to R′ < 0 (Fig. 4b). Therefore,
after some possible growth depending on the initial con-
dition, the bubble must shrink and close. At δ = 2ζ there
is a bifurcation: the extent of the separatrix on the Z-
axis diverges. For δ > 2ζ, the function Z(R) defined by
Eq. (14) has two real poles at

R± =
δ

ζ
±

√
δ

ζ
− 2, (15)

corresponding to two disjoint branches of the separatrix.
Above the lower branch R′ > 0 and below it R′ < 0,
therefore it is unstable. However, the upper branch is
stable. If the initial condition is above the lower branch
(R0 > R−), the bubble will grow until it is captured by

the upper branch, and it will never close, making a worm
bubble of equilibrium radius R+ (Fig. 4b).

In reality, worm bubbles have a finite length. Within
the model this would be possible if δ or ζ would fluctu-
ate so much that the system would switch domains in
Fig. 4b. Inverting Eq. (15) gives the typical size of the
fluctuation of δ/ζ required to close the worm bubble of a
certain radius. It is notable that the ratio δ/ζ scales like
∆c2. Minute variations of concentration may thus affect
greatly the shape of the bubbles. Such variations could
come from fluctuations of the freezing rate. It could also
come from fluctuations of the gas concentration due to
the nucleation and growth of other neighboring bubbles.
Furthermore, pressure variations in the liquid during the
growth are known to modulate the radius of worm bub-
bles [2]. Such pressure variations could be taken into
account in our model by modifiying Eq. 6.

SHAPE MATCHING

Closed pores

Our experiments give us access to pictures of frozen
bubbles of which we know at what rate they froze. Un-
known are the supersaturation ∆c around the bubble
when it appears and the nucleation process. In the follow-
ing we match numerical solutions of the Frozen Bubble
Equations to the pores observed in our experiments. For
simplicity, we shall assume that nucleation and entrap-
ment leave the bottom of the bubbles spherical – that is,
of uniform curvature – up to the point (Z0, R0). There-
fore, in Eq. (13) the initial slope can be expressed as
R′0 =

(
R2

0 − Z2
0

)
/2R0Z0. We measure Z0 and R0 on the

profiles and fit Rc by matching the overall shape of the
bubble; thence we compute ζ, δ and ∆c.

After its shape is matched with a solution, each pore
may be placed in a phase diagram (Fig. 5a). This phase
diagram confirms a posteriori the most important fea-
ture of the problem treated in this paper: both δ and ζ
are of order 1, therefore none of them may be neglected.
Both supersaturation and freezing must be taken into
account to properly describe the pores. This justifies
the complexity of Eq. (10). It should be noted that re-
moving the transient diffusion term

√
ζ/πZ in Eq. (10)

prevents from matching the shapes. Therefore, transient
diffusion is important in the growth of the pore, con-
trary to recent assumptions [29]. Nevertheless, this two-
dimensional phase diagram is insufficient to characterize
the pore shapes; two pores with similar δ and ζ but grown
out of different initial conditions may have significantly
different shapes (e.g. Fig. 5b and f, or Fig. 5c and g).

Most pores that we observe are well-matched from top
to bottom. Pores with a tail, due to nucleation be-
tween ice grains, are well-matched starting above the tail
(Fig. 5c). This suggests that transient gas diffusion fol-
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Eq. (13) is solved; the solid line represents the solution. The
thick dashed line near the top of each profile shows the fit
by the self-similar closing regime (Eq. 12). Each sample is
located in the phase diagram (a). All lengths are expressed
in µm.
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FIG. 6. (a) Pictures of various worm bubbles with (b) their
shapes matched (solution in red, initial condition in blue).
(c) Phase diagram predicting whether the bubble will close
(purple) or not (blue), depending on parameters δ and ζ and
on the initial condition R0. The equilibrium radius of worm
bubbles R∞ must be equal to R+ (Eq. 15). Dark blue squares
show the experimental measurements of R∞.
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lowing the nucleation is delayed until the bubble is free,
and not stuck between ice grains. Some large pores can
only be matched partially from some height Z0 to their
tip (Fig. 5f-g). In these cases, the bottom of the pore
does not have a uniform curvature, so our assumption
that the bubble is left spherical by the entrapment prob-
ably fails. It is also likely that for very slow freezing,
wetting effects become noticeable and our assumption of
a hemispherical bubble fails as well.

In addition to matching the full solution of the Frozen
Bubble Equation, we also fit the self-similar regime cor-
responding to the closing of the pore (Eq. 12). In each of
Figs. (5b-g), a thick dashed line with a contrasting color
shows the good agreement between the various experi-
mental profiles and the scaling law R ∝ (Zmax − Z)1/3.
It should be noted that even in cases where we struggle
to obtain a good match between the profile and the full
solution (like Fig. 5g), the self-similar regime near the
top is recovered.

Measurements

In the following, we consider pores frozen during a
single experiment, corresponding to Figure (1c). The
large number of pores formed during the same experi-
ment enables to study their statistics [45]. These pores
were frozen at a freezing rate 133 µm/s ± 10 µm/s;
in Figure (5a) they are situated in the main cloud of
points. Matching a solution of the Frozen Bubble Equa-
tion to each pore, we can measure its nucleation radius;
Rc = 5.8 µm ± 0.7 µm. From the definition of Rc fol-
lows the supersaturation: ∆c = 0.76 ± 0.1 g/L, which
is more than 40-fold the initial concentration (Materials
and Methods).

Shape matching enables to measure R0 and Z0 for
each bubble; we find R0 = 7.8 µm ± 1 µm and Z0 =
8.2 µm ± 1.4 µm. These values close to the nucleation
radius show that entrapment occurs very shortly after
nucleation. The initial condition R0 and Z0 corresponds
to some time T0 after the bubble nucleation. T0 = Z0/v
is the delay between the nucleation (when R = 0) and the
point at which R = R0. We measure T0 = 60 ms ±12 ms.

In order to obtain a simple form for the Frozen Bubble
Equation, we have assumed that the bubble meets the
freezing front with a right angle; in reality, this angle
is π/2 + ε and we have neglected ε. Shape matching
enables to measure the initial slope R′0 that the bubble
makes with the freezing front, and that we assumed to
be zero to simplify the description of diffusion. We find
that R′0 = −0.06 ± 0.04, corresponding to angle ε0 =
− arctanR′0 = 3.4± 2.3◦, which is indeed negligible.

Another remarkable result concerns the ratio R0/Rc,
which is the actual initial condition in the non-
dimensional Eq. (10). Its value is 1.33± 3× 10−4, which
is an extremely narrow range. This is likely due to the

conditions in which the bubble nucleates at the freez-
ing front. A very narrow range of values suggests that
the nucleation crevices [46] have very similar sizes and
shapes in the given range of freezing rate. More analysis
is required to describe these results quantitatively.

Worm bubbles

Shape matching can also be applied to worm bubbles.
In Figure 6, we use this technique to measure δ, ζ and
Rc for various worm bubbles, as well as their equilibrium
radius R∞ (Fig. 6b), during or after their growth. For
the latter we neglect the closed tips that occur due to
the above-mentioned fluctuations. According to Eq. 14
and 15, worm bubbles occur when two conditions are
fulfilled: δ > 2ζ and R0/Rc > R−. In this case, the
stable radius of the worm bubble is equal to R+. Placing
our measurements on a phase diagram for the bifurcation
(Fig. 6c) confirms that our model accurately predicts
when worm bubbles appear as well as their equilibrium
radius.

CONCLUSION

The shape of gas bubbles trapped in ice results of si-
multaneous freezing and growth by gas diffusion. Heat
transfer and capillarity set the shape of the bubble and of
the freezing front. Depending on the bubble size relative
to the nucleation radius Rc, diffusion makes it grow or
shrink.

We have demonstrated that the shapes of bubbles
trapped in ice, although extensively diverse, can be accu-
rately described by a single non-linear ordinary differen-
tial equation, the Frozen Bubble Equation (Eq. 10). The
non-dimensional parameters δ and ζ, respectively rep-
resenting the supersaturation and the freezing velocity,
suffice to describe the growth of a bubble from a given
initial condition R0 = R(Z0). The asymptotic regimes
explain why the tip of the pores is so characteristically
rounded – it follows a power law (Eq. 12) – and why
the quickly frozen bubbles tend to be slightly elongated
– the limit shape absent diffusion is a cone. Matching a
solution of the Frozen Bubble Equation to the shape of a
real pore enables to measure the supersaturation and the
nucleation radius at which the pore appeared. We have
shown that this is at least possible for freezing rates in
the range 12 µm/s to 263 µm/s.

The mathematical analysis reveals a bifurcation that
explains how worm bubbles, these cylindrical pores of po-
tentially several centimeters, are formed. To the best of
our knowledge, this is the first analytical model to make
such predictions. It yields the conditions for worm bub-
bles to appear as well as their equilibrium radius. Both
are confirmed by our experiments. In further work, it
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would be interesting to validate the model against mea-
surements made using different gases, with different sol-
ubility, such as CO2 (higher solubility) or argon (lower
solubility), and in a wider range of freezing rates.

Our model is written in the most parsimonious fash-
ion; it describes the pores well with as few parameters
and mechanisms as possible. It could be extended to
take into account the impact of neighbor bubbles on the
concentration field [47]. Mathematical analysis could also
be extended to the case in which the freezing rate is not
constant but decreases as the freezing front moves away
from the thermostat [48]. Our work is applicable to mea-
suring the freezing history of porous ice. It could also be
used to help the design of porous freeze-cast materials.

MATERIALS AND METHODS

Solution

We use deionized water left in contact with air for a few
days so that gases dissolve in it. Before the experiment,
the concentration of oxygen in the water was measured at
cO2 = 6.7mg/L at 21◦C. Using known correlations of the
solubility and Henry constant with the temperature [42],
we obtain the concentration of nitrogen cN2

= 11.6mg/L,
and the concentration of air as a mixture of both gases
c0 = 18.3 mg/L. We do not take into account further
differences between oxygen and nitrogen.

Experiments

Our experiments consist in freezing water contained in
a Hele-Shaw cell (Fig. 1a). We have used two seperate
experimental setups.

In the main setup, we used glass capillary tubes of rect-
angular section (Vitrocom), with inner dimensions 6 mm
by 300 µm for the bigger cell, 2 mm by 100 µm for the
smaller cell. No significant effect on the bubble shape of
using one or the other cell was found. The freezing of the
water column is recorded with a DSLR camera (Nikon
D5600) mounted with a macro lens (Nikon Micro-Nikkor
AI-s 200mm f/4) and a microscope lens (Mitutoyo). The
whole set-up is backlit by a light panel (Phlox). The
capillary is first filled up with water and then carefully
brought in contact with a thermostat, whose tempera-
ture is kept constant at −25◦C throughout the experi-
ment. The thermostat is a hollow copper plate through
which cold oil is pumped from a refrigerating bath (Ju-
labo Corio 1000F). The local rate of freezing is set by the
rate at which the latent heat released at the ice-water in-
terface diffuses through the ice to the thermostat [48].
Therefore, for a given heat flux absorbed by the ther-
mostat, v decreases with the distance to the thermostat
and with the section of the Hele-Shaw cell. We measure

the local rate of freezing v on each video, next to each
bubble. For all the experiments that we discuss in the
present paper, v remains constant (within a few µm/s)
during the formation of each bubble; it ranges from 12
to 263 µm/s.

The second experimental setup, used to study the for-
mation of worm bubbles, follows a similar design and pro-
tocol (see Supplementary Material). In short, room tem-
perature water is deposited between two acrylic plates
(spaced 1 mm apart) on a cooled and frosted substrate,
which is mounted on top of a freezing stage (BFS-40
MPA, Physitemp). The temperature of the substrate at
the base of the deposited water is measured by a ther-
mocouple. By varying the temperature of the substrate
we control the range of freezing velocities, here limiting
ourselves to a substrate temperature of −7.5◦C, yielding
velocities between 4 µm/s to 17 µm/s, ensuring the for-
mation of worm bubbles. The freezing process is recorded
in side-view using a camera (Nikon D850) connected to
a long working distance lens (Thorlabs, MVL12X12Z).
The sample is illuminated with a diffused cold-LED to
avoid local heating.

Numerical resolution

The Frozen Bubble Equation was integrated using a
fourth-order Runge-Kutta scheme in a custom Python
routine.

Compressibility effects

In the derivation we have assumed that air has con-
stant density. Compressibility can be taken into ac-
count when we develop the time derivative of the mass
in Eq. (7), by introducing the isothermal compressibil-
ity χ = ρ−1 (∂ρ/∂P ). The calculation yields a slightly
different version of Eq. (10):

dR

dZ
= δ

(
R− 1

R− Rχ

Rc

)(
1

R
+

√
ζ

πZ

)
− 1

2
, (16)

where Rχ = 2γχ/3 is the length scale associated to com-
pressibility. The first term of Eq. (16) resembles Eq. 6
of reference [6], which follows from a different deriva-
tion that starts from the equation of state of the gas.
In the limit Rχ � Rc Eq. (10) is recovered. For air
χ ' 10−5 Pa−1, so Rχ ' 0.5 µm. In our experiments
Rc is at least ten times larger, therefore compressibility
is negligible compared to dissolution.
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Supplementary Information

Videos

Figure 1 is supplemented with videos showing the
formation of each pore, labeled with the number of the
subfigure, from 1b to 1i. These videos are all played in
real time.

Figure 6 is also supplemented with videos showing the
formation of worm bubbles.

• Video 1: Typical experimental footage of the freez-
ing process showcasing the growth process of worm
bubbles.

• Video 2: Growth of the worm bubble corresponding
to Figure 6a of the main text (second panel).

• Video 3: Growth of the worm bubble corresponding
to Figure 6a of the main text (third panel).

Experimental setup to study worm bubbles

To study the formation and growth of worm bubbles
we make use of a different setup with which slower freez-
ing rates can be reached in a controlled way. The aim of
the experimental set-up is to freeze a sessile water drop
on a cold substrate. During the freezing process, bubbles
will naturally nucleate and grow near the advancing so-
lidification front, eventually leading to the formation of
worm bubbles. To avoid lensing effects we are interested
in freezing only a thin slice of purified water (Milli-Q). In
order to achieve this, an aluminium mount is placed on
top of a freezing stage (BFS-40 MPA, Physitemp) that
allows for two acrylic plates to be pressed against a thin

metal strip (see Figure 7). The gap between the plates is
1 mmand the temperature of the substrate close to the
base of the deposited water is measured by a thermocou-
ple that is placed inside a groove at the side of the metal
strip. We make sure that the desired bottom tempera-
ture, here −7.5 ◦C, has been reached well within ± 0.1 K
for several minutes before starting the experiment. A
needle (Nordson) and a syringe pump (PHD 2000 Infu-
sion, Havard Apparatus) are used to deposit amounts of
water of equal volume (Vd = 25 µL) between the plates,
resulting in a ’drop’ with a typical height of roughly
3 mm. To guarantee freezing as soon as the (room tem-
perature) water touches the substrate and to avoid su-
percooling, we only deposit the water once ice crystals
have formed on top of the thin metal strip. A gentle
flow of nitrogen along the outsides of the plates prevents
fog and frost formation that otherwise would obscure the
view. The drop is illuminated with a diffused cold-LED
to avoid local heating. The freezing process is recorded
in side-view using a camera (Nikon D850) connected to a
long working distance lens (Thorlabs, MVL12X12Z). A
typical experimental snapshot is shown in figure 7 that
depicts the growth of worm bubbles.

The limit R→ 0

Figure 8a shows the profiles described in Figure 3. Fig-
ure 8b shows values of β obtained through the rescaling.

Measurements on the pores of Figure 1c

In addition to the discussion of the dimensions of the
pores of Figure 1c we provide the statistics of measure-
ments performed thereon, in Figure 9.
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FIG. 7. Schematic of the experimental Hele-Shaw set-up (left) including side-view sketches and an experimental snapshot that
depicts the growth of worm bubbles in ice (right). During this process the solidification front advances upwards with velocity
v.

(a)

0

20
40

60

80

100

120

140

160

Z
(µ
m
)

v (µm/s) 12263
101 102 103101

102

103

v (µm/s)

β
(µ
m
2 )

(b)

1
–1

FIG. 8. (a) Samples of pore profiles to highlight the asymptotic regime when R → 0. (b) Evolution of parameter β with the
freezing rate v.



14

100 150 200
v (µm/s)

0.00

0.01

0.02

0.03

(a)0.04
p.
d.
f.

4 6 8
Rc (µm)

0.0
0.1
0.2
0.3
0.4
0.5

(b) (c)

0.4 0.6 0.8 1.0 1.2
Δc (kg/m³)

0

1

2

3

4

1.332 1.3340
250
500
750
1000
1250 (f)

R0/Rc
1.336

(d)

4 6 8 10 12
R0 (µm)

0.0

0.1

0.2

0.3

0.4

(e)

0.0
0.0

0–10

–0.1–0.2–0.3 0.1

2.5
5.0
7.5
10.0
12.5 (g)

5 10 15
Z0 (µm)

0.00
0.05
0.10
0.15
0.20
0.25
0.30 (h)

1.3 1.4 1.5 1.6 1.7
Z0/Rc

0
2
4
6
8
10
12

p.
d.
f.
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