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Abstract

When a droplet is generated, the ligament connecting the drop to the nozzle thins down and eventually pinches off. Adding solid
particles to the liquid phase leads to a more complex dynamic, notably by increasing the shear viscosity. Moreover, it introduces
an additional length scale to the system, the diameter of the particles, which eventually becomes comparable to the diameter of the
ligament. In this paper, we experimentally investigate the thinning and pinch-off of drops of suspensions with two different sizes
of particles. We characterize the thinning for different particle size ratios and different proportions of small particles. Long before
the pinch-off, the thinning rate is that of an equivalent liquid whose viscosity is that of the suspension. Later, when the ligament
thickness approaches the size of the large particles, the thinning accelerates and leads to an early pinch-off. We explain how the
bidisperse particle size distribution lowers the viscosity by making the packing more efficient, which speeds up the thinning. This
result can be used to predict the dynamics of droplet formation with bidisperse suspensions.

1 Introduction

The generation of droplets of suspension, i.e., a fluid containing
a solid dispersed phase, is present in many printing processes.1,2

For example, bio-printing frequently requires the inclusion of cells
or biomaterials in a liquid matrix.3,4 The generation of suspen-
sion droplets is related to the printability of the fluid, which is in-
fluenced by the nature of the liquid5 and that of the particles.6,7

For a suspension, the formation of drops is first controlled by
the rheological behavior resulting from the presence of the par-
ticles. At first order, the viscosity of the suspension increases
with the solid volume fraction φ.8–10 However, the presence of
solid particles also modifies the pinch-off dynamics,11 in particu-
lar when their size becomes comparable to the length scale of the
flow. This effect is particularly important during the pinch-off of
a drop since the diameter of the ligament becomes vanishingly
small.12 Such a deviation from a continuous-medium behavior
has also been observed during the deposition of thin films of sus-
pensions on substrates13–15 and in the atomization of suspension
sheets.16,17

Various manufacturing processes involve the generation of
drops at different scales.18,19 Many studies have investigated the
pinch-off dynamics of homogeneous Newtonian liquids extruded
from a nozzle to describe and optimize these processes.20 The for-
mation of drops directly at the nozzle is observed in the dripping
regime when the extrusion speed of the fluid is low enough and is
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accompanied by a localized break-up.21 Experiments performed
with homogeneous Newtonian fluids have shown that the thick-
ness of the liquid neck, which connects the drop to the nozzle,
vanishes in a finite time tc.20 Near this pinch-off singularity, the
thinning follows a self-similar dynamic. The relevant length scale
is no longer the nozzle diameter but the thickness of the liquid
neck h(t) at its narrowest point, and the relevant time scale is the
time to the pinch-off tc− t. The mechanisms acting on the liquid
neck, which are captured by the fluid viscosity η, its surface ten-
sion γ, and the inertia through its density ρ, can be summed up as
the Ohnesorge number, Oh = η/

√
ργh. This dimensionless num-

ber represents the ratio of viscous to inertial forces in a capillary
flow. In the inviscid limit of small Oh, dimensional analysis shows
that h(t) ∝ (γ/ρ)1/3 (tc − t)2/3,22,23 whereas in the viscous limit
of large Oh, the neck diameter evolves as h(t) ∝ (γ/η) (tc − t).24

The presence of solid particles dispersed in the fluid complex-
ifies the problem since near the pinch-off the diameter of the
neck becomes comparable to that of the particles. Various stud-
ies on the dynamics of jets and drops of particulate suspensions
have shown that the dripping/jetting transition occurs at lower
flow rates for a particulate suspension than for an equivalent ho-
mogeneous liquid with the same viscosity.11,25 Past experiments
have been performed with suspensions of monodisperse particles.
Hence, the flow was characterized by two length scales: the par-
ticle diameter d and the thickness h(t) of the jet (or neck) at its
narrowest point. These experiments have revealed two regimes:
a continuous regime at early-time and a regime presenting dis-
crete effects brought by the discontinuous nature of the solid
phase near the pinch-off.11,26–29 Similar studies on stretched lig-
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aments of suspensions led to the same conclusions.30–34 In these
configurations, it was shown that as long as h(t)� d, the suspen-
sion can be considered as an effective homogeneous Newtonian
fluid whose viscosity is independent of the size of the particles.10

This continuous description fails near the final pinch-off, and the
thinning accelerates. In the case of viscous interstitial fluids and
monodisperse suspensions, it has recently been shown that the
transition to the discrete effects regime occurs at the critical neck
thickness h? ∼ d (φc − φ)−1/3, where φc denotes the maximum
packing fraction.34 Bonnoit et al.26 have also reported that this
discrete effects regime is followed for a short period by a regime
only controlled by the interstitial liquid, identical to the pinch-off
of a drop of pure interstitial liquid. Moreover, for suspensions,
the pinch-off is very localized, whereas for a viscous fluid having
the same viscosity, a long and thin filament is observed until the
drop detaches.11,26

The rheology of particulate suspensions has been extensively
characterized for monodisperse, spherical, neutrally buoyant, and
non-Brownian particles dispersed in a Newtonian liquid.10 At
small particle Reynolds numbers, the suspension exhibits a New-
tonian rheology. The effective shear viscosity η(φ) of the suspen-
sion depends on the interstitial fluid viscosity ηf and on the parti-
cle volume fraction φ but not on the particle diameter d. Different
empirical correlation for η(φ) have been proposed.10,35,36 For in-
stance, the Maron-Pierce model captures experimental measure-
ments reasonably well, while retaining a simple expression:37

η(φ) = ηf(1− φ/φc)
−2, (1)

where φc is the maximum volume fraction for a suspension
of monodisperse spherical particles. Its value depends on the
inter-particles friction coefficient and is typically in the range
0.56 < φc < 0.64.10 The quantity 1 − φ/φc roughly describes
the volume in which each particle is free to move without hin-
drance from its neighbors. When φ → φc, this leeway vanishes,
and the suspension jams. Such rheological approaches have been
shown to capture the early thinning of monodisperse suspension
thread.26,34

The studies mentioned above all considered monodisperse sus-
pensions where the particles are described by a single length scale.
However, in practical applications, the dispersed phase often fea-
tures a broad particle size distribution, and such ideal descrip-
tions fail to capture the reality. The viscosity of bidisperse sus-
pensions is more challenging to describe.38–44 The main observa-
tion is that bidisperse suspensions display a lower viscosity than
monodisperse ones for the same volume fraction φ. This observa-
tion is correlated to the increase in the maximum volume fraction
φc.40,41 In order to describe the rheology of bidisperse suspen-
sions, two additional parameters are required: the ratio of large
to small particle diameters, δ = dL/dS, and the fraction of the
solid volume occupied by the small particles, ξ = VS/(VS+VL).43

The capillary dynamics of bidisperse suspensions remains elu-
sive. One may intuitively expect that the macroscopic viscosity
will be reduced. However, the free surface may cause the reor-
ganization, filtration, or sorting of the particles of different sizes,
as recently observed for dip-coating.45–47 The pinch-off dynam-
ics and the droplet formation have only been characterized for
monodisperse suspensions, and our understanding and modeling
of the printing of polydisperse suspensions remains limited. In
particular, for a bimodal distribution of particles, the introduc-
tion of the new parameters δ and ξ makes uncertain whether the
models for the pinch-off of monodisperse suspensions hold in the
bidisperse case.

To characterize this configuration, we consider in this study a
model bidisperse suspension and investigate experimentally the
pinch-off and detachment of droplets. In particular, we report
the thinning dynamics of the liquid neck between the drop and
the nozzle. We start with a presentation of our experimental
approach, and we report qualitative observations between differ-
ent compositions of particulate suspensions. Then, we quantify
the time evolution of the neck thickness in the different regimes
before pinch-off. Finally, we discuss these results in light of the
rheology of bidisperse suspensions.

2 Experimental Methods

The suspensions consist in different batches of spherical
polystyrene particles (Dynoseeds from Microbeads), with den-
sity ρ = 1054 ± 4 kg.m−3 and diameters 20, 80, 140, and
250 µm. The particles are dispersed in silicone oil (AP100,
Polyphenyl-methylsiloxane from Sigma-Aldrich) of dynamic vis-
cosity ηf = 120 mPa.s and density ρ = 1058 kg.m−3 at 20◦C. The
interstitial liquid was chosen to match the density of the parti-
cles to limit sedimentation effects over the duration of the ex-
periments. The silicone oil perfectly wets the particles, although
it was shown that the contact angle between the particles and
the interstitial liquid does not affect the pinch-off dynamics.34

To separate the influence of the effective viscosity from the dis-
crete effects of the particles, we also compare the behavior of the
suspensions with that of a Newtonian fluid having similar macro-
scopic properties as the suspension.17,26 Here, we use a more vis-
cous silicone oil (AP1000, ηAP1000 = 1.28 Pa.s at 20◦C), whose
viscosity is close to the viscosity of a monodisperse suspension of
volume fraction φ = 40%.

The particle volume fraction is φ = (VS + VL)/(VS + VL + Vf),
with VS and VL the volume of small and large particles, respec-
tively, and Vf the volume of interstitial liquid. Since we focus on
the role of the bidisperse distribution for a given volume fraction,
we keep it constant at φ = 40%. To characterize the role of the
size distribution, we vary the size ratio of large to small particle
diameters δ = dL/dS and the fraction of the total solid volume
occupied by the small particles ξ = VS/(VS + VL).

The experiments consist of slowly extruding the suspension
from a syringe with a nozzle of outer diameter h0 = 2.75mm
[figure 1(a)]. The formation of the drop and the pinch-off are
recorded with a high-speed camera (Phantom VEO710) at 2,000
fps. The camera is equipped with a macro lens (Nikon 200mm
f/4 AI-s Micro-NIKKOR) and a microscope lens (Mitutoyo X2)
so that the typical resolution in our measurement is 10 µm. The
experiments are backlit with a LED panel (Phlox) to clearly see
the contour of the drop and the suspension thread [figure 1(b)].
This contour is detected with thresholding methods using the
software ImageJ. Then, a custom Python routine enables us to
extract the minimum thickness of the ligament, h(t), at each time
step. Figure 1(c) reports an example of the time evolution of the
minimum thickness h in the case: dS = 80µm, dL = 250µm,
φ = 40% and ξ = 20%. For each suspension, experiments were
repeated five times and led to reproducible results.

3 Drop formation: thinning and pinch-
off dynamics

We first report the qualitative thinning behavior of a bidisperse
suspension compared to that of monodisperse suspensions con-
taining each size of particles. We also compare the thinning of
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Figure 1: (a) Schematic of the experimental method. (b) Picture of the neck of a bidisperse suspension drop containing φ = 40%
of particles distributed as ξ = 20% of small particles (dS = 80µm) and 1− ξ = 80% of large particles (dL = 250µm). (c) Thinning
dynamics of the neck for the same bidisperse suspension. The inset shows the dynamics in log scale. The dashed line represents the
linear self-similar regimes for capillary-viscous thinning.

2 mm
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(a) Pure AP1000 (b) 250 µm

(c) 50% 80 µm & 50% 250 µm (d) 80 µm

Figure 2: Example of droplet detachment for (a) AP1000 silicone oil (no particles) and for suspensions containing φ = 40% of
particles distributed as follows: (b) 250µm particles only, corresponding to ξ = 0; (c) half of 80µm and half of 250µm particles,
corresponding to ξ = 0.5; (d) 80µm particles only, i.e., ξ = 1. The corresponding movies are available in Supplemental Materials.
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Figure 3: Thinning dynamics for the pinch-off of different bidisperse suspensions droplets. The total volume fraction remains
constant and equal to φ = 40%. (a) Different values of the small particle fraction ξ for a bidisperse suspension composed of particles
of diameters dS = 20µm and dL = 80µm. The black circles represent the experiment with the AP1000 silicone oil. (b) For a
larger fraction of big particles (ξ = 20%) and different bidisperse suspensions of small and large particle diameters of dS and dL,
respectively. (c) Situation with a larger fraction of small particles (ξ = 80%) for different bidisperse systems.

these suspensions with the behavior of a silicone oil (AP1000)
having a shear viscosity of the same order of magnitude as a
monodisperse suspension of volume fraction φ = 40%. Fig-
ures 2(a)-(d) shows the thinning process in the case of (a) a
viscous silicone oil without particles, (b) a monodisperse suspen-
sion at a volume fraction φ = 40% of 250 µm particles, (c) a
bidisperse suspension at a volume fraction φ = 40% and where
half of the solid volume of particles is made of 80 µm particles and
the other half of 250 µm particles, corresponding to ξ = 0.5 and
dL/dS = 3.125, and (d) a monodisperse suspension with φ = 40%
of 80 µm particles. These experiments illustrate that the overall
thinning occurs on slightly different time scales between the pure
liquid and the suspensions. The initial thinning, shown in the left
columns of pictures in Figure 2, is controlled by the effective vis-
cosity both for monodisperse and bidisperse suspensions. Since
the silicone oil (AP1000) without particles has a shear viscosity
similar to that of the suspensions, the initial thinning dynamic
is similar. However, a significant difference due to the particles
is the acceleration of the thinning just before the pinch-off (last
two images of each series in Figure 2). We also observe that the
presence of two particle sizes in the bidisperse suspension seems
to play a role in the latest stages of the thinning. Indeed, for
monodisperse suspensions [figures 2(b) and 2(d)] the ligament
goes from a state where it contains particles to a state where it is
only made of fluid. This change in the local composition creates
a local decrease in the viscosity, which accelerates the pinch-off.
Such an effect was previously reported by Bonnoit et al..26 In the
bidisperse case (ξ = 0.5, figure 2c), there is an intermediate stage
where the neck only contains the smallest particles. In summary,
the initial thinning seems to be governed by the effective viscosity
of the suspension, until the neck reaches a characteristic length
comparable to the particle diameter. Under this threshold, the
thinning is accelerated by the particles. A key difference brought
by the bimodal size distribution is that the neck can contain more
than one size of particles.

Figures 3(a)-(c) report the time evolution of the minimum
thickness of the neck h, for suspensions involving different couples

of particle sizes (dS, dL), and different fractions of small particles
ξ. The total solid volume fraction φ is kept constant and equal
to 40% in all the experiments. Note that the evolution of h is
plotted as a function of tc − t. Therefore, the initial thinning
is on the right side of the figures, the pinch-off on the left, and
time elapses from right to left. For a given set of particle sizes
(dS = 20µm, dL = 80µm, δ = dL/dS = 4), we recover that the
final stage is slightly faster for the larger particles (ξ = 0) than
for the small ones (ξ = 1). In figure 3(a), the yellow curve shows
a suspension made of only 80 µm particles, and the blue curve
of only 20 µm particles. This acceleration becomes noticeable in
the last 100-150 ms before the break-up. The initial thinning for
bidisperse suspensions is also faster than for the monodisperse
suspensions during the entire thinning process and not only the
latest stages. This observation is likely due to the fact that for a
given solid volume fraction, a bidisperse suspension has a lower
viscosity than a monodisperse one.38,43 The influence of the size
ratios δ = dL/dS for a given fraction of small particles ξ is re-
ported in figure 3(b) for ξ = 0.2 and figure 3(c) for ξ = 0.8.
The thinning rate increases when the size ratio δ increases. This
observation agrees with the qualitative decrease of the viscosity
of the bidisperse suspension when the size ratio increases.43 The
acceleration of the pinch-off in the later stage also seems more
significant when the large particles prevail [figure 3(b)] rather
than when small particles prevail [figure 3(c)]. This stronger ac-
celeration is likely introduced by the size selection of particles in
the ligament connecting the droplet and the nozzle.

In the following, we first consider the initial effective viscos-
ity regime, to relate the observed macroscopic viscosity to the
viscosity of the bidisperse suspensions. We will then consider
the accelerated thinning regime, influenced by the second size of
particles.
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Figure 4: Rescaled thinning dynamics. The experiments are the same as those presented in Figure 3(a)-(c). The time is stretched
by the viscosity ratio ηr and shifted by ∆t, so the thinning dynamics of the suspensions overlap with that of the AP1000 oil (black
circles) in the region before the accelerated pinch-off. (a) Varying the fraction of small particles, ξ, for a bidisperse suspension
composed of particles of diameters dS = 20µm and dL = 80µm dispersed in AP100 silicone oil. (b) for a larger fraction of big
particles (ξ = 20%) and (c) a larger fraction of small particles (ξ = 80%) for different bidisperse suspensions of small and large
particle diameters of dS and dL, respectively.

4 Thinning dynamics: effective viscous-
fluid regime

We compare the thinning dynamics of the bidisperse suspensions
and of the pure AP1000 silicone oil. The viscosity of this oil,
ηAP1000 = 1.28 Pa.s, is close to that of monodisperse suspensions
with a volume fraction φ = 40% of particles dispersed in the
AP100 silicone oil. Its other physical properties – density, surface
tension – are of the same order. The effect of the particles on the
thinning is twofold. First, far enough from the final break-up, the
suspension behaves like a homogeneous fluid with an equivalent
viscosity η(φ). We define the ratio of the shear viscosity of the
suspension to that of AP1000 as

ηr =
η(φ)

ηAP1000
. (2)

Later, the particles accelerate the detachment of the drop com-
pared to the equivalent fluid regime.11 Similarly to Bonnoit et
al.26 we define the time shift ∆t between the pinch-off of the
pure oil and that of the suspension.

The viscosity ratio ηr and the time shift ∆t can be estimated for
each suspension by adjusting their values to find the best overlap
with the AP1000 reference.26 Since the typical time scale of the
thinning is proportional to the fluid viscosity, we seek the values
of ηr and ∆t so that the curve h = f [(tc − t)/ηr + ∆t] for a given
suspension overlaps as well as possible with the curve hAP1000 =
f(tc− t) for AP1000 oil. This overlap is sought for in a region far
away from the pinch-off, which we define as 0.5 mm < h < 2 mm,
using an iterative bisection method. Starting at iteration n = 0
with η

(0)
r = 1 and ∆t(0) = 0, we increment η(n)r by one step

∆η, then we compute the average time difference ∆t(n) between
h(n) = f

[
(tc − t)/η(n)r + ∆t(n−1)

]
and hAP1000 = f(tc − t). If

the mean square deviation between h(n) and hAP1000 increase
from one iteration to the next one, the size of the step ∆η is
divided by two, and the direction of variation of η(n)r is switched.
Eventually, η(n)r and ∆t(n) converge towards ηr and ∆t. By this
mean and using equation (2), we estimate the experimental value
of the viscosity: ηexp = ηrηAP1000.

Figures 4(a)-(c) report the rescaling for the different bidisperse
suspensions previously reported in figures 3(a)-(c). It shows that
all experiments with suspensions can be rescaled to match the
initial thinning dynamics of the pure AP1000 oil. The deviation
from the AP1000 dynamics occurs at relatively large values of
h, typically a few particle diameters, as observed by Bonnoit et
al.26

Using this rescaling, we investigate the effect of the fraction of
small particles ξ on the pinch-off for given sizes of small and large
particles, dS and dL, respectively (figure 4a). The monodisperse
suspension of large particles (ξ = 0, in dark blue) breaks up faster
than the monodisperse suspensions of small particles (ξ = 1, in
yellow), in agreement with the recent study of Château et al.34

The bidisperse suspensions also follow a monotonic trend: as the
composition shifts from the small to the large particles (when
ξ decreases) the pinch-off becomes more and more accelerated.
Besides, the more small particles are in the suspension, the later
the thinning dynamics deviates from the reference liquid.

In Figure 4(b), we compare the thinning and pinch-off be-
haviours for different diameter ratios of particle dL/dS at a given
fraction of small particles (ξ = 20%). We still observe a deviation
from the equivalent liquid earlier for the bidisperse suspensions
containing the biggest large particles: typically around h = 1mm
for the 80–250 µm suspension and h = 0.8mm for the 20–250 µm
suspensions. When the large particles are smaller, this deviation
is observed for smaller neck diameters, for instance, around 0.6
mm for the 20-80 µm bidisperse suspension. More generally, for
a given small particle diameter dS, the larger dL is, the earlier the
deviation from the homogeneous fluid is observed. This behavior
can be rationalized by considering that when the thickness of the
neck h becomes comparable to dL, the large particles are progres-
sively pushed out of the neck by capillary effects. As a result,
the liquid is locally depleted in large particles. For ξ = 20%, the
large particles represent 80% of the solid volume. Therefore, the
local depletion in large particles leads to a smaller particle vol-
ume fraction, typically dropping from φ = 40% to an estimate of
ξ φ = 8%. Such a change in the local volume fraction leads to a
reduction of the local viscosity by almost an order of magnitude
and can explain the sudden acceleration of the thinning at late
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Figure 5: Comparison between the shear viscosity measured with
the rheometer, ηrheo and the viscosity measured from the pinch-
off experiments ηexp, for two bidisperse suspensions and different
fractions of small particles ξ. The dashed line represents ηrheo =
ηexp.

times. The overall behavior is similar in the regime dominated
by small particles and reported in Figure 4(c). However, since
the large particles now only constitute 20% of the particle volume
fraction in the bidisperse suspension, their depletion in the neck
does not lead to such a viscosity drop as drastic as in the case
with 80% of large particles.

5 Viscosity of the bidisperse suspension

In Figures 4(a)-(c), we assumed that the characteristic time scale
of the thinning process is proportional to the shear viscosity of the
suspension. Thus, we identified the fitting parameter ηr as the
viscosity ratio [equation 2]. In the most general case, the forces
acting on the drop are the surface tension γ, the viscosity, and
inertia. Long before the pinch-off, the nozzle diameter h0 is the
relevant length scale, and the thinning rate ḣ is typically of order
10 mm/s. Therefore, the Reynolds number Re = ρh0ḣ/η for the
bidisperse suspensions is of order 3 × 10−2, which suggests that
inertia is negligible. In this case, the typical time scale should
vary like ηh0/γ, proportionally to the viscosity. Previous pinch-
off experiments with monodisperse suspensions have shown that
their Trouton’s ratio – which compares the elongational viscosity
to the shear viscosity – is close to that of a Newtonian liquid.26,34

It is therefore relevant to compare the viscosity obtained from
our bidisperse pinch-off experiments, which corresponds to an
elongational flow, to the shear viscosity measured through other
methods.

To compare the values obtained from the pinch-off experi-
ments, ηexp, with the actual shear viscosity of the bidisperse
suspensions, we measured the steady-shear viscosity ηrheo inde-
pendently with a rheometer (Anton Paar MCR 92). We used
a rough parallel plate geometry of diameter 25 mm and a gap
between the plates of 1 mm. For the volume fraction consid-
ered here, φ = 40%, the viscosity was found to be nearly shear-
independent. Figure 5 reports the shear viscosity measured with
the rheometer ηrheo to the viscosity estimated from the pinch-off
experiments ηexp, for two couples of particle sizes (20µm/80µm
and 20µm/140µm). The experimental viscosity ηexp is obtained

through equation (2): ηexp = ηr ηAP1000. We obtain a very good
agreement between the viscosity obtained with these two differ-
ent methods, even though the viscosity varies depending on the
composition of the bidisperse suspension. This result suggests
that the viscosity of the suspension can be directly measured
by observing the thinning of the neck. Future studies scanning
a large range of volume fractions could confirm this possibil-
ity. Moreover, our results imply that the thinning timescale is
proportional to the viscosity, even though the thinning is not
self-similar for the range of Ohnesorge numbers considered here
(2.3 < η/

√
γρh0 < 4.4).

We now consider the variation of the viscosity observed when
varying the values of ξ and δ. Qualitatively, the lower viscosity
of bidisperse suspensions can be explained by the more efficient
packing of spheres of different sizes. In the limit where the large
particles are much bigger than the small ones, the small particles
can sit in the interstices between large particles without increas-
ing the total volume of the packing. Hence, the maximal solid
packing fraction φc of bidisperse suspensions is higher, leading to
a less viscous suspension for a given volume fraction φ.

A variety of models have been developed to predict the value
of φc for a given particle size distribution. In particular, Ouch-
iyama and Tanaka48 developed a model for an arbitrary poly-
disperse distribution. Their approach consists of considering the
local volume fraction around each particle and then averaging it
over the particle size distribution. Gondret and Petit40 adapted
this model to the specific case of a bidisperse distribution. Their
calculations leads to the maximum packing fraction

φc(δ, ξ) =

NSd̃S
3

+NLd̃L
3

(NS/Γ)(d̃S + 1)3 +NL

(
(d̃L − 1)3 +

[
(d̃L + 1)3 − (d̃L − 1)3

]
/Γ
) ,

(3)

where NS and NL are the number fractions of small and large
particles, respectively, and are given by:

NS =
ξδ3

ξδ3 + (1− ξ) and NL =
1− ξ
ξδ3

NS, (4)

and where d̃S and d̃L are the reduced sizes given by

d̃S =
ξδ3 + (1− ξ)
ξδ3 + (1− ξ)δ and d̃L = δd̃S. (5)

Finally, Γ denotes the average number of particles in the vicinity
of a given particle:

Γ = 1 +
4

13
(8φ0 − 1)×

NS(d̃S + 1)2
(

1− 3

8

1

d̃S + 1

)
+NL(d̃L + 1)2

(
1− 3

8

1

d̃L + 1

)
NS d̃S

3
+NL

(
d̃L

3 − (d̃L − 1)3
)

(6)

where φ0 is the maximum solid fraction in a monodisperse pack-
ing. By fitting equation (1) to the measurements of the viscos-
ity for monodisperse suspensions with various solid fractions, we
measured φ0 = 57.8% ± 0.3% for all the particles used in this
study. Equation 3 predicts the maximal packing fraction for par-
ticles of comparable sizes and volume fraction. However, if the
small particles are small and few enough to sit between the large
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(b) dS= 80 µm | dL= 250 µm | δ = 3.125
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Figure 6: Effective viscosity ηexp estimated from the pinch-off experiments. The dashed lines represent the viscosity predicted by the
model. (a) dS = 80µm, dL = 140µm. (b) dS = 80µm, dL = 250µm. (c) dS = 20µm, dL = 140µm. (d) dS = 20µm, dL = 250µm.

ones without disturbing them, the maximal packing fraction is:40

φc(δ →∞, ξ → 0) =
φ0

1− ξ (7)

Equation 7 is the upper limit for the maximal packing frac-
tion, because the packing cannot be more compact than a pack-
ing where small particles are negligible in size and in number.
Hence, if the value of φc predicted by equation (3) is greater
than φ0/(1− ξ), then φc is given by equation (7). Once we have
computed φc, we obtain the viscosity of the bidisperse suspension
with equation (1)

Figures 6(a)-(d) compare the effective viscosity measured dur-
ing the pinch-off ηexp (symbols) to the theoretical value obtained
using this approach (dashed line). The grey circles represents the
monodisperse cases corresponding to ξ = 0 (only large particles)
and ξ = 1 (only small particles). Our experimental data show
that the viscosity of the bidisperse suspensions is systematically
smaller than that of the monodisperse ones, and that this dif-
ference depends on the ratio of particle size δ = dL/dS . The
larger δ, the more pronounced the drop in viscosity. The value
of the viscosity when generating a droplet can drop as low as
50% for the largest size ratios considered here [Figure 6(d)]. In
the large-particles-dominated regime, there is a very good agree-
ment with the model for the couples of particle sizes that we
tested (80µm/140µm and 80µm/250µm). In the case of small
size ratios [figures 6(a)-(b)], the model predicts the viscosity dur-
ing the formation of droplets on the whole range of composition.

The main deviation occurs for large size ratios [figures 6(c)-(d)].
When the fraction of small particles ξ is less than 50%, the model
underestimates the viscosity. Also, the experimental variations
of viscosity are more symmetrical than what the model predicts.
Although the model suggests that the viscosity should be min-
imum around ξ = 20% for these couples of particles, the mini-
mum for bidisperse suspensions with a large size ratio is around
50%. These discrepancies are especially visible in figures 6(c)-
(d). Since we have shown in Figure 5 that pinch-off experiments
lead to viscosities similar to those obtained with a rheometer, it
seems unlikely that the higher viscosity at low ξ be due to the
neck geometry. It is more likely that the problem arises from
our approach to computing the viscosity since we obtain similar
results with the rheometer.

In the present study, we only consider the effect of the size dis-
tribution on φc, and we keep the same expression for the viscosity
as a function of φ (equation 1) as for a monodisperse suspension.
The issue is that at a large size ratio (dL � dS), and especially
when the large particles dominate (ξ < 50%), the model from
Gondret and Petit predicts a steep rise in φc.40 This is because
the small particles sit between the large ones without disturb-
ing them. Therefore, the bidisperse packing becomes an overlay
of two separate packings that do not interact with each other.
However, in a suspension, the small particles do interact with
the large ones through lubrication films, whatever their size.

Let us consider the case δ � 1, meaning that the small parti-
cles are very small compared to the large ones. In the limit ξ → 1,
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the large particles are dispersed in a suspension of small parti-
cles. Considering that most of the viscous dissipation happens
between small particles because they create stronger velocity gra-
dients, replacing small particles with large ones should reduce the
viscous dissipation per unit volume. As shown in Figure 6 this
effect is well captured by the model. In the case ξ → 0, the
suspension is mainly composed of large particles, and viscous
dissipation occurs in the interstices in-between. If we replace a
small number of large particles with small ones that will sit in
these interstices, two opposite effects play. On one hand, the
polydispersity increases φc, so that the viscosity should decrease.
On the other hand, the small particles have little space to move
between the large particles. This confinement effect is known to
increase the viscosity of monodisperse suspensions49. Combining
these two effects possibly explains why the measured viscosity is
larger than what is predicted by the model based on the sole
maximum packing fraction. Nevertheless, this problem deserves
further investigation.

6 Early pinch-off

Δ
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Figure 7: Time shift ∆t between the pinch-off of pure AP1000
oil and that of bidisperse suspensions (dS = 20µm and dL =
140µm), as a function of the fraction of small particles ξ. The
black circles represent the monodisperse cases. The dotted line
is the best linear fit.

In addition to decreasing the viscosity in the equivalent fluid
regime, the bimodal particle size distribution acts on the discrete
effects regime near the pinch-off, in which the thinning acceler-
ates. Figure 7 shows the evolution of the time shift ∆t for the
bidisperse suspension of 20 µm and 140 µm particles for various
values of ξ. If we first consider the monodisperse cases (black
circles at ξ = 0 and ξ = 100%), we recover that monodisperse
suspensions of large particles break up earlier than those of small
particles.26,34 Since ∆t is associated with the discrete particulate
effects in the last stages before the pinch-off, one could expect
that its value is controlled by the small particles only. However,
Figure 7 shows that even a small amount of small particles dis-
persed amongst the large ones is enough to slightly delay the
pinch-off. Moreover, the value of ∆t for intermediate bidisperse
suspensions seems to vary linearly from one monodisperse state
to the other. We observed a similar linear behaviour for the other
four couples of particle sizes considered in this study. Hence, it
suggests that for a bidisperse suspension, ∆t(ξ, dS, dL) is simply

the volume average of ∆t over the two particles sizes:

∆t(ξ, dS, dL) = ξ∆t(dS) + (1− ξ)∆t(dL) (8)

Another interesting feature of the accelerated pinch-off is that
it changes the thinning rate in the final linear regime. In the
last moments before pinch-off, the radius of a viscous liquid
thread successively follows two self-similar regimes, both linear:
h = 2vη(tc − t). First, the capillary-viscous regime, described
by Eggers:22 vη = 0.0304(γ/ηf). Then, the inertial-viscous
regime, described by Papageorgiou:24 vη = 0.0709(γ/ηf). For
pure AP1000, we observe a linear trend (black dashed line in
figure 3(a)), with a thinning rate vη of the same order of mag-
nitude as predicted by Eggers and Papageorgiou. Interestingly,
for the suspension shown in figure 1(c) the thinning rate in the
linear regime is twenty times larger than the value predicted by
Eggers,22 and ten times larger than that predicted by Papageor-
giou.24 This result suggests that in the last instants before pinch-
off, although the viscous thread is devoid of particles, it is still
subject to their influence. Nevertheless, these aspects of accel-
erated pinch-off deserve a further study, notably considering the
local variations of φ and ξ at the neck.

7 Conclusion

In this study, we have characterized the thinning and pinch-off
of drops of suspensions with a bimodal particle size distribu-
tion. We found that the size of the particles, as well as the
relative fraction of each size, influence both the equivalent fluid
regime, where suspensions can be considered as liquids with a
larger effective viscosity, and the discrete regime, where particles
accelerate the thinning and the break-up. We demonstrated that
the time scale associated with the thinning was proportional to
the suspension viscosity. We were then able to rescale the thin-
ning dynamic of each suspension to that of a reference liquid of
known viscosity. This method enables a direct measurement of
the viscosity of bidisperse suspensions. Our experiments also re-
veal how the composition of bidisperse suspensions influences the
late discrete regime. This regime is characterized by a time shift
∆t between the pinch-off of the suspension and that of pure sil-
icone oil of comparable shear viscosity. Our study suggests that
for a bidisperse suspension, the value of ∆t varies linearly from
its value for the small particles to its value for the large parti-
cles. Also, although its scope is limited to bidisperse suspensions,
this study aims towards polydisperse suspensions, a relevant sys-
tem for industrial processes. Recent numerical simulations have
shown that the rheology of a polydisperse suspension could be
linked to that of one with a statistically equivalent bidisperse dis-
tribution.43 Moreover, we believe that proper implementation of
the Ouchiyama-Tanaka model48 would extend the prediction of
the viscosity to suspensions with an arbitrary size distribution.
Eventually, controlling the viscosity drop induced by the polydis-
persity could help improving the efficiency of printing methods.
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