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The formation of drops of a complex fluid, for instance including dissolved polymers and/or solid particles,
has practical implications in several industrial and biophysical processes. In this Letter, we experimentally inves-
tigate the generation of drops of a viscoelastic suspension, made of non-Brownian spherical particles dispersed
in a dilute polymer solution. Using high-speed imaging, we characterize the different stages of the detachment.
Our experiments show that the particles primarily affect the initial Newtonian necking by increasing the fluid
viscosity. In the viscoelastic regime, particles do not affect the thinning until the onset of the blistering in-
stability, which they accelerate. We find that the transition from one regime to another, which corresponds to
the coil-stretch transition of the polymer chains, strongly depends on the particle content. Considering that the
presence of rigid particles increase the deformation of the liquid phase, we propose an expression for the local
strain rate in the suspension, which rationalizes our experimental results. This method could enable the precise
measurement of local stresses in particulate suspensions.

Many industrial processes and natural phenomena involve the fragmentation of a fluid into droplets [1–4]. For
applications as diverse as inkjet printing, bioprinting and other droplet deposition techniques [5–8], as well as in the
study of airborne disease transmission [9, 10], the fluid is often complex, loaded with particles, bubbles, cells, as well
as dissolved polymers or proteins. The heterogeneity and the granularity of complex fluids lead to a complex rheology.
Commonly, such real-life fluids exhibit viscoelasticity, like polymer solutions, which for instance can be used in
living tissue engineering [11], and coating layers of photovoltaic panels [12]. Past studies have mostly considered the
formation of droplets from homogeneous fluids, both Newtonian and non-Newtonian [2, 13–17], and the influence
of a dispersed phase — such as solid particles — remains poorly quantified. In particular, the interplay between a
non-Newtonian interstitial fluid with suspended particles remains elusive.

The formation of drops of suspensions is expected to be primarily influenced by the rheology of the interstitial
fluid and by the properties of particles. For simple flows of spherical particles that remain small compared to the
length scale of the flow, increasing the solid volume fraction φ is known to increase the shear viscosity η [18, 19].
However, rheology becomes a tricky problem for more complex types of deformations such as the elongational flows
encountered during drop formation. The size of the particles also plays a role when it is comparable to the scale of the
flow [20–31]. This necessarily happens during drop detachment [32] since the thickness of the liquid neck eventually
vanishes. Different studies with non-Brownian, Newtonian suspensions have revealed that in the first moments of the
detachment of a pendant drop, the evolution of the minimum diameter of the neck hmin evolves like in the case of a
pure homogeneous fluid having the same effective viscosity as the suspension, independently of the particle size [32–
37]. Then, when hmin falls below a certain limit that depends on the particle size and the solid fraction, the thinning
accelerates because of discrete particulate effects [38].

The pinch-off of a viscoelastic fluid, such as a polymer solution, is more complex because the thinning involves
additional elastic forces [39, 40]. At the time when the liquid should break up, the polymer opposes the rupture
with an elastic stress. The neck then turns into a filament that stretches as the polymer chains are elongated in the
extensional flow. Then, the minimum diameter hmin decreases exponentially [41], whereas, for a Newtonian fluid,
its decay would follow a power-law [42]. This thinning experiment constitutes a classical method for quantifying
the viscoelasticity of the liquid since it enables a direct measurement of the polymer characteristic time λ0, which
translates the relaxation of the elastic strain when the applied stress is released [39, 43, 44]. The addition of particles
modifies the local viscous stress acting on the polymer chains, and thus the rheology of the viscoelastic fluid. Since the
filament becomes vanishingly small, discrete particulate effects are expected to play a role on the thinning dynamics
and on the final breakup into satellite droplets. However, these couplings remain unknown. The goal of this Letter is
to describe and clarify the interplay between the viscoelasticity and dispersed particles.

The suspensions used in this study consist of solid particles dispersed in a viscoelastic interstitial liquid at a volume
fraction φ. The spherical and monodisperse polystyrene particles (Dynoseeds TS from Microbeads) have a density
ρp ' 1057 kgm−3, and we used batches of different diameters d ranging from 20 µm to 140 µm. The viscoelastic
interstitial fluid is a mixture of water (74%), glycerol (25%) and polyethylene oxide (1%) with a molar weight of
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FIG. 1. Detachment of drops of a viscoelastic liquid (74% water, 25% glycerol, 1% PEO300) with and without particles. In the
first picture of each row, the neck width is 1 mm. The time stamps display the time to the viscoelastic transition t− tc. (a) Polymer
solution only, (b) φ = 40% of particles of diameter d = 20 µm, (c) φ = 40% of particles of diameter d = 140 µm.

300 kg/mol (PEO, from Sigma Aldrich) whose density matches that of the particles. To quantify the effect of the
heterogeneities brought by the particles, we also performed experiments using equivalent fluids with larger glycerol
concentrations [45]. Their composition is chosen so that their shear viscosity matches that of a suspension of volume
fraction φeq [28, 34]. The pinch-off experiment consists in slowly extruding the suspension through a nozzle of
outer diameter h0 = 2.75 mm using a syringe pump (KDS Legato 110). Outside the nozzle, a pendant drop swells
and eventually detaches under its own weight. The thinning dynamics are recorded at 10,000 fps using a high-speed
camera (Phantom VEO 710L) equipped with a macro lens (Nikon 200mm f/4 AI-s Micro-NIKKOR) and a microscope
lens (Mitutoyo X2). The drop and the neck are backlit with a LED panel (Phlox) to clearly distinguish its contour,
which we detect using the software ImageJ and a custom-made routine.

Fig. 1(a)-(c) show examples of the evolution of the liquid neck that connects the drop to the nozzle for three different
configurations: particle-free interstitial liquid [Fig. 1(a)], 20 µm particles [Fig. 1(b)] and 140 µm particles [Fig. 1(c)].
In the two last cases, the solid volume fraction is φ = 40%. Each series of pictures begins when the neck is 1 mm thick.
The pictures on the left show the neck in the Newtonian regime at early times, whereas the pictures on the right show
the filament in the viscoelastic regime at late times. The transition between one regime to the other occurs at time
tc. In the following, we define the origin of time at t = tc so that t − tc = 0 corresponds to the transition between
the two regimes. In the pure liquid case, shown in Fig. 1(a), the neck quickly thins down and turns into a filament,
which keeps thinning down until it breaks. The whole process takes a few tens of milliseconds. Shortly before the
break-up, the filament undergoes a blistering instability which produces several tiny droplets [23]. Adding φ = 40%
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FIG. 2. (a) Thinning dynamics for φ = 30% of d = 20 µm particles compared to the behavior of the interstitial fluid (open circles)
and of the equivalent viscous fluid (filled circles). The dashed curve before t = tc shows the capillary-inertial regime [Eq. (1)], the
dashed line after t = tc shows the viscoelastic regime [Eq. (2)]. (b) Thinning dynamics for different solid volume fractions φ of
20 µm particles.

of 20 µm particles dispersed in the polymer solution yields a similar behavior in the Newtonian regime, as shown
in Fig. 1(b). However, the presence of particles also disturbs and accelerates the blistering, with the droplets now
encapsulating particles. A similar dynamic is observed with the larger 140 µm particles reported in Fig. 1(c). In this
last case, the particles deform the free surface from the beginning of the viscoelastic regime, and the destabilization of
the filament is even faster.

Let us first compare the thinning of the viscoelastic suspensions to that of the particle-free viscoelastic liquids.
Fig. 2(a) reports the thinning dynamics hmin(t) for a suspension containing φ = 30% of 20 µm particles, which is
compared to the dynamics of the sole interstitial fluid and to that of the equivalent fluid with the same shear viscosity
as the suspension. The Newtonian necking regime is controlled by the balance between inertia and the surface tension
γ. The Ohnesorge number Oh = η0/

√
ργh0, which compares the viscosity of the interstitial fluid η0 to the inertial

and capillary effects, equals 5 × 10−3 for the interstitial fluid. Hence, in first approximation, viscosity should be
negligible. Dimensional analysis leads to the scaling law for the time evolution of the diameter at the neck hmin,
during the Newtonian regime [46]:

hmin ∝
[
γ(tc − t)2/ρ

]1/3

We match this scaling law to our experiments using the fitting parameter A, which quantifies the thinning rate in the
Newtonian regime:

hmin = A(tc − t)2/3 (1)

Eq. (1) is plotted in Fig. 2(a) and captures all of our experiments, regardless of the volume fraction and the diameter of
the particles dispersed in the viscoelastic liquid phase. This result demonstrates that the Newtonian regime is mostly
driven by capillarity and inertia. The critical time tc is measured from the fitted curve. If there were no polymer chains
to inhibit the pinch-off, the finite-time singularity would occur at t = tc [13]. In the present case, t = tc is the moment
of the transition to the viscoelastic regime. At later stages, the thinning is controlled by the elongational viscosity of
the liquid which increases as hmin decreases, because the polymer chains stretch. Therefore, the filament thickness
decreases exponentially [41]:

hmin ∝ e−t/τf , (2)

where τf = 3λ0 is the characteristic decay time of the filament and λ0 the longest relaxation time of the dissolved
polymer chains [47].
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FIG. 3. (a) Evolution of the prefactor A obtained by fitting the experiments with Eq. 1 for different particle volume fraction φ.
Inset: Dimensionless At2/3c /h0 [Eq. (3)]. (b) Neck thickness at the transition to the viscoelastic regime hc vs. the volume fraction
φ. (c) Relaxation time τf vs. particle volume fraction φ. The dotted line is the best fit for τf ∝ η. Colored symbols represent
different particle diameters, and gray circles denote the equivalent fluids plotted according to the equivalent particle fraction φeq.

As shown in Fig. 2(a), in the Newtonian regime, the viscoelastic suspension (in blue) thins down slower than the pure
interstitial fluid (open circles). It follows, however, the exact same dynamics as the equivalent fluid, which matches
its shear viscosity. This suggests that although the good fit of Eq. (1) shows a first order inertial-capillary mechanism,
viscosity plays a second-order, yet non-negligible role. However, we observe that in the viscoelastic regime, the long
thread of suspension thins down as fast as the interstitial fluid, much faster than the equivalent viscous fluid. This
means that the particles have little or no effect on the long-term stretching of the polymer chains. Fig. 2(b) compares
the thinning dynamics for different volume fractions of particles φ and confirms these trends. In the Newtonian regime,
the more particles, the more viscous the suspension, the slower the thinning. In the viscoelastic regime, there is no
noticeable effect of the volume fraction of particles. Surprisingly, the thinning dynamics remains that of the sole
interstitial viscoelastic liquid.

Fitting Eqs. (1) and (2) to the experiments leads to two physical quantities, A and τf, which respectively quantify
the thinning rate in the Newtonian and in the viscoelastic regime. Fig. 3(a) shows the value of the prefactor A used in
Eq. (1) when varying the volume fraction φ of the suspension for various particle sizes and for the equivalent viscous
fluids. When φ is increased, the prefactor A decreases — by a third between φ = 0% and φ = 30%. Since the
equivalent viscous fluids behave likewise, this suggests that A captures the amplitude of the second-order effect of
viscosity on the thinning. Another way to consider this viscous effect is to see it as a delay of the transition to the
viscoelastic regime. Indeed, Eq. (1) can be non-dimensionalized into:

hmin

h0
= A

t
2/3
c

h0

(
1− t

tc

)2/3

. (3)

The inset in Fig. 3 shows that the rescaled prefactor, A t2/3c /h0 is constant for all experiments performed in this study.
The constant value of A t2/3c /h0 means that viscosity affects the Newtonian thinning regime by changing its time
scale. Hence, the thinning dynamic is that of an inviscid fluid subject to inertia and capillarity, but the time scale over
which it takes place varies slightly with the fluid viscosity. Therefore, the main effect of the particles in the Newtonian
regime is to increase the viscosity of the fluid.

The main difference with the pinch-off of a Newtonian fluid is that at t = tc, the diameter of the liquid neck has
a finite value. We define the critical thickness at the transition: hc = hmin(tc) [Fig. 2(a)]. Figure 3(b) reports the
variations of hc when increasing the volume fraction φ for different particle sizes. Surprisingly, we do not observe
any significant effect of particles. The critical thickness hc keeps an average value of 210 ±30µm for all suspensions.
This result is counter-intuitive since hc is typically of the order of magnitude of the size of the 140 µm particles. This
is explicitly visible in Fig 1(c): first, at the scale of the neck, the suspension is not a continuous medium anymore, and
second, the large particles deform the free surface at the neck. However, it appears that these phenomena do not affect
the value of hc. If we now consider the equivalent viscous fluids, we observe that increasing the viscosity of the fluid
leads to a thicker thickness at the transition. Again, although suspensions are more viscous than the interstitial liquid
– ten times for φ = 40% – this does not play a role on hc.

Similarly to hc, the relaxation time τf is overall unaffected by the particles in the viscoelastic regime. Fig. 3(c)
reports that in the range of parameters considered here, there is no influence of the particle size nor of the volume
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FIG. 4. (a) Time evolution of the strain rate at the neck ε̇ for volume fractions ranging from φ = 10% (light blue) to φ = 40%
(dark blue) of 20 µm particles and for the interstitial viscoelastic fluid only (open circles). (b) Evolution of ε̇ rescaled by the critical
strain rate ε̇c as a function of the rescaled time around the transition (t − tc)ε̇c for all particle diameters and volume fractions. (c)
Critical strain rate of the viscoelastic suspensions ε̇c normalized by that of the interstitial fluid ε̇c,0 as a function of φ/φc. The black
line represents Eq. (6) for α = 1, and the dashed curves Eq. (6) with the value of α that best fits a given particle size.

fraction on τf, which average value equals 13 ms. However, for the equivalent fluids, τf increases with the viscosity
of the solvent [48]. The dotted line represents the best fit for a linear relation between τf and the viscosity and
matches the behavior of the equivalent fluids. The absence of effects of the particles on hc and τf implies that the
dynamic is controlled by the stretching and the relaxation of the polymer chains, whose characteristic time scale
is proportional to the solvent viscosity [49]. Then, at and after the transition, the bulk viscosity of the suspension is
irrelevant. Even unwound, polymer chains remain small compared to the particles, typically of the order a few hundred
of nanometers [48]. Therefore, at the scale of the polymer chains, the viscosity is that of the interstitial fluid η0 and not
the effective viscosity of the suspension. Hence, once the polymer chains are unwound, the thinning regime is only
governed by the interstitial fluid, and the particles stop influencing the process.

We now consider the transition from the Newtonian regime to the viscoelastic regime. Rather than quantifying the
thinning in terms of the neck width hmin, we define the instantaneous strain rate at the neck, ε̇ = (∂vz/∂z)hmin

. Using
the continuity equation, we obtain :

ε̇ = − 2

hmin

∂hmin

∂t
. (4)

Fig. 4(a) shows that ε̇ sharply increases up to a maximum value ε̇c at the transition, and then decreases. The good
agreement between hmin(t) and the exponential law given by Eq. (2) [Fig. 2a] shows that ε̇ become constant and equal
to 2/τf ' 0.15 ms−1 in the viscoelastic regime. Therefore, the Weissenberg number of the flow,Wi = λ0ε̇, eventually
equals 2/3, as given in the literature [47]. The effect of particles dispersed in the viscoelastic interstitial liquid is
twofold: when the volume fraction φ increases, the critical strain rate ε̇c decreases, and the transition between the two
regimes takes place over a longer time. These two effects have the same origin since 1/ε̇c is also the relevant time scale
of the transition. Rescaling the strain rate as ε̇/ε̇c and the time as (t − tc)ε̇c shows that all experiments collapse on a
single master curve [Fig. 4(b)]. This result demonstrates that the strain rate follows a self-similar dynamics around the
transition, which is only controlled by the critical strain rate ε̇c.

To characterize the variations of ε̇c, we may consider that with rigid particles, the deformation of a volume of
suspension is concentrated in its liquid phase. Hence, the local strain rate ε̇loc is larger than the global strain rate ε̇.
Let us consider a single particle and the liquid around it, which is submitted to an external deformation ε̇. In the
non-dimensionalized space, the particle occupies the volume φ and can move freely within the volume φc without
encountering its neighbors. For the suspensions considered here, the maximum packing fraction φc, that is the volume
fraction at which all particles are in contact so that the lubrication films between them vanish [19], is close to 55% [38].
This value is smaller than the random close packing fraction of 64% at which spheres maximize the number of their
contact and where friction prevails over viscosity. However, it agrees with the recent results of Château et al. [38], who
used similar particles but dispersed in a Newtonian liquid. Assuming infinitely rigid particles and an incompressible
liquid, the deformation is entirely supported by the liquid. Since the liquid occupies the volume φc−φ, one can write:
(φc − φ) ε̇loc = φcε̇. This approach considers the ideal case of an infinitely large volume where the particle do not feel
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the boundaries. In order to describe the confinement effects due to the geometry of the neck, we add a geometrical
parameter α. We can then write the expression of the local strain rate in the liquid phase:

ε̇loc = ε̇ (1− φ/φc)
−α

. (5)

We now consider the microscopic interactions between particles and polymer chains. The transition to the vis-
coelastic thinning regime corresponds to the coil-stretch transition of the polymer chains [41], which unwind when the
strain rate of the solution reaches the critical value ε̇c,0 ∼ 1/2τz [49]. The Zimm relaxation time, τz ∼ η0Rg

3/(kBT ),
is the relaxation time of the coiled polymer chain, with Rg its radius of gyration. Therefore, if we assume that the
polymer chains between particles experience the local strain rate corresponding to Eq. 5, it means that for φ > 0 the
coil-stretch transition occurs when ε̇loc = ε̇c,0, although ε̇c < ε̇c,0. ε̇c,0 can be measured directly in the case φ = 0, and
we obtain:

ε̇c = ε̇c,0 (1− φ/φc)
α (6)

Fig. 4(c) reports the ratio ε̇c/ε̇c,0 as a function of the volume fraction φ for different particle diameters. For particles
up to 40 µm the experiments are captured by the simplest version of Eq. (6) where α = 1. For larger particles, the
value of α that best fits the data decreases: α = 0.75 for d = 80 µm and α = 0.45 for d = 140 µm. Since we
expect α to describe the geometry of the flow at the neck, it should only depend on the ratio of the two length scales
present in the system: the width of the neck at the transition hc and the diameter of the particles d. We expect α to be
a function of d/hc, such that α → 1 for d� hc and α → 0 for d� hc. Fig. 4(c) shows that for d ' hc, we measure
a value of ε̇loc that is greater than expected. In that case, at the scale of the particles, the liquid phase is bounded by
the particles but also by the free surface [Fig 1(c)]. This confinement reduces the space around which the particles
can move, and probably changes the local strain rate. However, this effect of confinement is only a supposition and it
deserves a dedicated study.

In conclusion, we have characterized the effect of particles on the thinning of viscoelastic dilute polymer solutions.
By comparing the viscoelastic suspensions with equivalent fluids having the same shear viscosity, we have demon-
strated that particles only affect the Newtonian regime by increasing the shear viscosity. We found that the viscoelastic
thinning regime is not affected by particles and only controlled by the interstitial fluid. However, particles drastically
change the transition from the Newtonian to the viscoelastic regime. As the neck thins down, the strain rate ε̇ in the
suspension increases. Because particles are rigid, coiled polymer chains between them experience a local strain rate
ε̇loc, which is larger than ε̇. When ε̇loc becomes comparable to the Zimm relaxation time τz, the chains unwind and the
flow becomes viscoelastic. Around the transition, ε̇ follows a self-similar dynamic whose relevant scale is the critical
strain rate ε̇c. If the particle size is comparable to that of the neck (d ' hc), confinement effects make the motion of
the particles more constrained, which increases the value of ε̇c. The output of this study goes beyond the pinch-off of
viscoelastic suspensions as this model experiment enables a direct measurement of the local strain rate in the liquid
phase of a granular suspension, a great challenge in the rheology of suspensions [19].
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I. SUSPENSIONS AND EQUIVALENT FLUID

The particles are dispersed in a mixture of water (74% w/w), glycerol (25% w/w) and polyethylene oxide with a
molar weight of 300 kg/mol (PEO, 1% w/w, from Sigma Aldrich). The water/glycerol mixture has a shear viscosity
of η0 = 1.9 mPa.s, a surface tension γ = 68± 2 mN.m−1 and a density ρ = 1059± 3 kg m−3. The polystyrene particles
of density ρ ' 1057±3 kg.m−3 are neutrally buoyant in the mixture over the timescale of an experiment. The volume
fraction is defined as the ratio of the volume of particles to the total volume, φ = Vg/Vtot and is varied in the range
0% to 40%.

The equivalent fluid to a given suspension of volume fraction φeq is defined as the water-glycerol-PEO mixture with
the same PEO content and a water-to-glycerol weight ratio chosen so that its shear viscosity is equal to that of the
suspension. The composition of the equivalent fluids used in the present study is summarized in Table I.

φeq (%) Water (%) Glycerol (%) PEO300 (%)

0 74 25 1

10 69 30 1

20 59 40 1

30 47 52 1

40 33 66 1

TABLE I. Mass composition of the equivalent liquids. The first line describes the interstitial fluid in the suspension.

II. VIDEOS

The snapshots in Fig. ?? are extracted from three videos available in supplemental materials:

• Interstitial fluid.avi;

• 20µm 40%.avi;

• 140µm 40%.avi.

The videos are slowed down 1000 times. The nozzle at the top of the image is 2.75 mm wide.

III. CONTOUR DETECTION AND PROCESSING

The image processing used to extract the time evolution of the minimal diameter hmin is done in two steps. First,
the contour of the drop and the ligament is detected on each frame of the video using a thresholding method with
ImageJ. We obtain an array of points representing the 2D position of that contour. In a second time, a custom-made
Python routine translates the contour of the neck into the thickness profile h(z, t).

Fig. 1 shows several thickness profiles at different time, regularly spaced by ∆t = 3 ms. The neck width hmin(t) is
defined as the global minimum of h(z, t) in the Newtonian regime. In the viscoelastic regime, the wide and constant
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minimum of h(z, t) defines hmin(t). By comparing the results of this automatic processing to the direct measurement
of hmin on the video, we find a maximum error of 2 pixels, i.e., around 10 µm.
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FIG. 1. Thickness profiles for the thinning of the interstitial fluid, corresponding to Fig. 1(a) in the main article. The time
step between two profiles is constant and equals 3 ms. The circles represent the neck width hmin in the Newtonian regime.

IV. REPRODUCIBILITY OF THE THINNING EXPERIMENTS

Achieving reproducibility can be a significant challenge when dealing with dense suspensions. However, since we
considered dilute and moderate volume fraction (φ ≤ 40%), the reproducibility of the thinning experiments is not
an issue here. For instance, Fig. 2 reports the thinning dynamic h = f(t − tc) for ten realizations of the same
experiment, in this case, the pinch-off of a suspension drop containing a solid fraction φ = 40% of 140 µm particles.
The small variations observed between the different realizations can be understood since the suspension remains
dilute (φ ≤ 40%) and the particles small enough compared to the system. The example presented here holds for other
suspensions considered in this study and confirms the reproducibility of our experiments.
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FIG. 2. Time evolution of the minimal diameter hmin for ten realizations of the same thinning experiments for a suspension
with φ = 40% of 140 µm particles. Each color refer to a different realization.


